4 Benefits of Healthcare Mobile Apps

Health is everything! Due to a hectic and stressful life, we often neglect regular check-ups or any other ailment treatment. And that is why there is an absence of peace of mind and soul in everyone’s life. Steven Cavellier says, no doubt different people have different priorities, but health is something that will always remain the topmost priority in every individual’s life. And that is why technology has introduced many healthcare apps to fill the gap between your health and hectic life. Nowadays, many healthcare mobile applications are available to help you live a healthy life effortlessly. Furthermore, it makes easy for the patient and doctor to connect with each other at any time with ease.

Let’s find out the myriad benefits of healthcare mobile apps here!

 

1. Track Health Data with a Healthcare Application

Now you can track health data with the help of healthcare apps in a hassle-free manner. Isn’t sounds cool? Such applications, make it easy for everyone to see their health information instantly just with a few clicks. Furthermore, you can track your fitness improvement information anywhere at any time. So, it is advisable for the physicians to use healthcare apps to increase the flow of patients.

2. Schedule Appointment

Do you find difficulty in scheduling appointments with a physician? No worries, as healthcare mobile app developers have made everything easy by connecting doctor and patient with ease. Now you can schedule your appointment with a doctor in one swipe. If an app can connect doctor and patient for 24/7, what more could you ask for? Many times patient sitting in the waiting room get frustrated and annoyed, this is where the app plays a key role. It make easy for patient to schedule the appointment and save a lot of time.

Healthcare Mobile Apps
Steven Cavellier | Healthcare mobile app

3. Easy to Share the Reports

Now with the help of a mobile app, a patient can access his or her test reports at any time. Once the medical reports are out, doctors push the test results to the patient’s health record. And patient can access it while sitting anywhere. Therefore, it is advisable for the physicians to make use of this technology and offer patients quality services. In the end, it will help in increasing the flow of patients as well.

4. Easy to Secure the Information

Mobile applications can provide all medical records and information about the patient. It secures the discussion and other confidential information between doctor and patient through encryption. Furthermore, the chances of losing medical data or record are very less. Now, the patient can update its medical history with the app in less time. In the end, it will make every detail transparent between the doctors and patients.

Final Words

According to expert Steven Cavellier healthcare mobile apps are beneficial for both doctors and patients in many ways. The demand for healthcare mobile apps is increasing day by day. They are making the life of healthcare providers and seekers easier in every way. In the marketplace, many healthcare mobile app developers are in the race, but only those who believe in innovation and quality will win the race.

Advertisements

Trends to Watch in Healthcare Industry in 2018

Nowadays, the health-tech trends focusing on finding solutions for patient empowerment through new recompense structures, charge pressures, and system integration. In fact, the digital transformation is predictable to refurbish the healthcare industry this year by using tailored medicine and value-based care, Steven Cavellier says.

Here are some trends to watch in the healthcare industry in 2018:

• Real-Time Monitoring

By using non-intrusive monitoring, patient data is composed longitudinally across various time points. This is due to diverse sensors which track patient signs 24 hours a day, through wearable devices accompanied by blood and saliva monitoring methods. The real-time monitoring has open up chances to improve healthcare by identifying right treatment method and tracking treatment impact.

• Real-Time Personalization

Treatment methods for patients need the improvement due to the varying of treatment burdens and other reasons. Having the aptitude to recognize the impact of medication on a disease creates the prospect to learn why the particular treatment plan is not working. Moreover, what fresh course of treatment should be taken?

• Precision Medicine

There are regular practices for treatment plans on the basis of patient’s medical needs emphasis Steven Cavellier. Not every individual have the same problem and will benefit from treatment in the same way. For instance, with cancer, misspellings or alterations in significant genes force the cells to nurture out of control, ultimately spreading through the body.

As doctors progress through diverse therapies without awareness on which will prove effective, valuable time is being lost. Precision medicine will help to daunt needless treatment, lessen damaging drug events, and upsurge overall security, ultimately helping the healthcare system to be more effectual.

health

• Utilization of Big Data

The progress of “Internet of Medical Things” along with smartphone and wearable devices allow healthcare service providers to access individual’s medical reports anytime, anywhere. After retrieving the data, physicians use it to recognize health hazards and offer patients with lifesaving preemptive treatment immediately.

• Artificial Intelligence and Cloud

The adoption of artificial intelligence helps to make the healthcare system more organized says Steven Cavellier. This technology helps in resolving many concerns of the patients, surgeons, hospices and actually overall healthcare industry.

• Mobility Access

Mobility access improving the way individuals and doctors interact. Today, most of the doctors using smartphones as well as medical apps on a regular basis. In fact, hospitals, doctors and insurance companies are now storing the medical records of the patients into the cloud. Moreover, mobile devices can now do ECG, DIY blood test and serve as a thermometer.

Wrapping Up

Steven Cavellier has given the above trends of the healthcare industry in 2018. The professional specializes in information to the Healthcare Industry. He integrates reports and passes the information along to select medical practices.

Meditation And Yoga Can ‘Reverse’ DNA Reactions Which Cause Stress

Mind-body interventions (MBIs) such as meditation, yoga and Tai Chi don’t simply relax us; they can ‘reverse’ the molecular reactions in our DNA which cause ill-health and depression, according to a study by the universities of Coventry and Radboud. Steven Cavellier is also in health education profession.

The research, published in the journal Frontiers in Immunology, reviews over a decade of studies analyzing how the behavior of our genes is affected by different MBIs including mindfulness and yoga.

Experts from the universities conclude that, when examined together, the 18 studies – featuring 846 participants over 11 years – reveal a pattern in the molecular changes which happen to the body as a result of MBIs, and how those changes benefit our mental and physical health.

The researchers focus on how gene expression is affected; in other words the way that genes activate to produce proteins which influence the biological make-up of the body, the brain and the immune system.

When a person is exposed to a stressful event, their sympathetic nervous system (SNS) – the system responsible for the ‘fight-or-flight’ response – is triggered, in turn increasing production of a molecule called nuclear factor kappa B (NF-kB) which regulates how our genes are expressed.

NF-kB translates stress by activating genes to produce proteins called cytokines that cause inflammation at cellular level – a reaction that is useful as a short-lived fight-or-flight reaction, but if persistent leads to a higher risk of cancer, accelerated aging and psychiatric disorders like depression.

Steven Cavellier Yoga and Meditation
Steven Cavellier Yoga and Meditation

According to the study, however, people who practice MBIs exhibit the opposite effect – namely a decrease in production of NF-kB and cytokines, leading to a reversal of the pro-inflammatory gene expression pattern and a reduction in the risk of inflammation-related diseases and conditions.

The study’s authors say the inflammatory effect of the fight-or-flight response – which also serves to temporarily bolster the immune system – would have played an important role in mankind’s hunter-gatherer prehistory, when there was a higher risk of infection from wounds.

In today’s society, however, where stress is increasingly psychological and often longer-term, pro-inflammatory gene expression can be persistent and therefore more likely to cause psychiatric and medical problems.

Lead investigator Ivana Buric from the Brain, Belief and Behaviour Lab in Coventry University’s Centre for Psychology, Behaviour and Achievement said:

“Millions of people around the world already enjoy the health benefits of mind-body interventions like yoga or meditation, but what they perhaps don’t realize is that these benefits begin at a molecular level and can change the way our genetic code goes about its business.

“These activities are leaving what we call a molecular signature in our cells, which reverses the effect that stress or anxiety would have on the body by changing how our genes are expressed. Put simply, MBIs cause the brain to steer our DNA processes along a path which improves our well-being.

“More needs to be done to understand these effects in greater depth, for example how they compare with other healthy interventions like exercise or nutrition. But this is an important foundation to build on to help future researchers explore the benefits of increasingly popular mind-body activities.”

Source: http://www.medicalnewstoday.com/releases/317971.php?nfid=116332

Sugar Sponges Sop Up and Release Glucose As Needed

Many diabetes patients must inject themselves with insulin, sometimes several times a day, while others take medications orally to control blood sugar. The injections, as well as the side effects from both regimens, can be painful. Now, one team reports in the Journal of the American Chemical Society progress toward an insulin-free diabetes treatment that requires fewer injections.

Steven Cavellier Health Tips
Steven Cavellier Health Tips

According to the U.S. Centers for Disease Control and Prevention, current trends predict that one in three adults in the U.S. will have diabetes by 2050. Treatments include insulin injections, which can be painful. In addition, the injections can involve different types of insulin – a slow-acting one before bed or a fast-acting one before meals – which can be confusing. Pills are not much better, as patients sometimes forget to take them. Both drugs and injections can have various side effects, including nerve damage, infections and insulin resistance. Non-invasive insulin-dependent systems that include hydrogels and polymers have developed in the laboratory, but they also can trigger these complications. So Jianzhong Du and colleagues wanted to develop a method that would be easy to use and that would avoid side effects.

Steven Cavellier’s Drinking Tea could help Stave Off Cognitive Decline

The researchers nicknamed their treatment the “sugar sponge.” It’s an injected lectin-coated polymer vesicle that sopped up and bound glucose when glucose levels were high, and released the sugar when its concentrations were low in laboratory tests. They also tested the sponge in mice with type-I diabetes, and within two days, they saw antidiabetic effects. The researchers say that the sponge could one day serve as a treatment for either type-I or type-II diabetes.

The authors acknowledge funding from the National Natural Science Foundation of China, Shanghai International Scientific Collaboration Fund, Thousand Talents Plan (China) and the Fundamental Research Fund for the Central Universities. Steven Cavellier shared this article on his website.

Resource: http://www.medicalnewstoday.com/releases/317773.php?nfid=116332

Can Unemployment Increase Stroke Risk?

Unemployment appears to increase the risk of having a stroke in middle-age Japanese men and women, and may have similar implications in the U.S, according to new research published in the American Heart Association’s journal Stroke.

Compared with continuously employed middle-aged Japanese participants:

Those experiencing at least one period of unemployment increased risks of developing and dying from either ischemic (clot) stroke or hemorrhagic (bleed) stroke.

Reemployed men, but not women, also had increased risks of stroke.

Continuously unemployed men and women showed higher risks of stroke mortality.

Unlike in the United States, in Japan, workers are part of a “life-term employment system” in which male employees devote themselves to a stable job. “If they lose that job, they are likely to be reemployed in unsatisfactory, lower positions,” said Ehab. S. Eshak, M.D., MSc., Ph.D., lead study author and visiting associate professor at Osaka University’s medical school in Japan.

Unemployment

Researchers analyzed the long-term impacts of changes in employment among 21,902 Japanese men and 19,826 women, age 40-59, over 15 years. During that time, 973 men had a stroke and 275 died because of it, while 460 women had a stroke and 131 died because of it.

The results may not apply to other countries because of cultural differences, including Japan’s unique labor market.

“The main implication is that job security during the most productive work ages could help reduce stroke risk,” said Hiroyasu Iso, M.D., Ph.D., M.P.H, study co-author and professor at Osaka University. “Those who do suffer a job loss need help in rejoining the labor market in an appropriate career.”

The study could not distinguish between people who left a job on their own or were fired.

Other co-authors are Kaori Honjo, Ph.D.; Ai Ikeda, Ph.D.; Manami Inoue, Ph.D.; Norie Sawada, Ph.D. and Shoichiro Tsugane, Ph.D.. Author disclosures are on the manuscript.

The study was funded by National Cancer Center Research and Development and a Grant-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare of Japan. Steven Cavellier shared this information.

Source: http://www.medicalnewstoday.com/releases/316932.php?nfid=116332

Exercise Associated With Improved Heart Attack Survival

Exercise is associated with improved survival after a heart attack, according to research published in the European Journal of Preventive Cardiology. The chances of survival increased as the amount of exercise rose.

“We know that exercise protects people against having a heart attack,” said last author Professor Eva Prescott, professor of cardiovascular prevention and rehabilitation, University of Copenhagen, Denmark. “Animal studies suggest that myocardial infarctions are smaller and less likely to be fatal in animals that exercise. We wanted to see if exercise was linked with less serious myocardial infarctions in people.”

The study included 14 223 participants of the Copenhagen City Heart Study who had never had a heart attack or stroke. Levels of physical activity were assessed at baseline in 1976-1978 and classified as sedentary, light, moderate, or high.

Participants were followed through registries until 2013. A total of 1 664 participants had a myocardial infarction, of whom 425 died immediately.

The investigators compared levels of physical activity between those who died immediately from their myocardial infarction and those who survived. They found that patients who exercised were less likely to die from their myocardial infarction.

There was a dose-response relationship between exercise and death from myocardial infarction. Patients with light or moderate/high physical activity levels were 32% and 47% less likely to die from their myocardial infarction, respectively, than sedentary patients.

heart attack survival

Professor Prescott said: “Patients who were sedentary were more likely to die when they got a myocardial infarction and patients who did exercise were more likely to survive. There was also a dose-response relationship, so that the odds of dying if people got a myocardial infarction declined with the level of exercise they did, reaching an almost 50% reduction for those who were the most physically active.”

“One possible explanation is that people who exercise may develop collateral blood vessels in the heart which ensure the heart continues to get enough blood after a blockage,” she continued. “Exercise may also increase levels of chemical substances that improve blood flow and reduce injury to the heart from a heart attack.”

Professor Prescott said: “This was an observational study so we cannot conclude that the associations are causal. The results need to be confirmed before we can make strong recommendations. But I think it’s safe to say that we already knew exercise was good for health and this might indicate that continuing to exercise even after developing atherosclerosis may reduce the seriousness of a heart attack if it does occur.” Steven Cavellier shared this information.

Source: http://www.medicalnewstoday.com/releases/316909.php?nfid=116332

Ingredients for Lasting Memories

Being able to remember experiences long after they have happened is a basic part of life that guides behavior and even helps form personalities. Now, scientists at the RIKEN-MIT Center for Neural Circuit Genetics (CNCG) have found evidence that helps explain how this ability is possible. Published in Science magazine, the study proves the existence of long-lasting engram cells in the frontal part of the brain and shows how connections with other brain regions allow these cells to mature as new memories become permanent.

Episodic memories of experiences are thought to begin in a region of the brain called the hippocampus. Led by Susumu Tonegawa, director of the RIKEN Brain Science Institute and the RIKEN-MIT CNCG, researchers have been studying memory formation in mice by combining associative learning with optogenetics and cell labeling. With this approach, they can tag neurons that represent the memory of an event as they are formed in the hippocampus. These types of neurons are called engram cells, and their activation – either naturally or through optogenetic stimulation with colored light – are the basis for memory recall.

Episodic memories stored in hippocampal engram cells are known to be short lived, and until, now scientists have theorized that permanent memories form gradually over time as new engram cells and neuronal connections form in the cerebral cortex – the outer gray matter of the brain. In their new series of experiments, the RIKEN-MIT team demonstrates that this theory is only partially correct. Explains lead author Takashi Kitamura, “We discovered the existence of cortical engram cells, but it turns out that they are not formed gradually over time. They actually form at the same time as the initial memory in the hippocampus.”

Ingredients for lasting memories by Steven Cavellier

Just as Pavlov famously conditioned his dog to salivate at the sound of a bell, the team uses conditioning to study contextual memory in rats. To determine which areas in the cortex were important for forming the long-term memory, they blocked inputs to different brain areas during conditioning or during memory recall over a 3-week period. They found that long-term recall was affected only when information transfer to the frontal cortex of the brain was blocked during conditioning. “This was surprising,” notes Tonegawa, “because it indicated that the cortical memory was likely created on the very first day, and not gradually as has been assumed.”

Next, the team positively identified engram cells in the prefrontal cortex. To do so, they inserted light-sensitive ion channels into prefrontal cells that were active during conditioning, and then excited the cells with blue light when the animals were in an unconditioned context. As with their previous studies in the hippocampus, this caused the mice to exhibit behavior indicative of their remembered experience – a hallmark of engram cells.

By definition, animals should be able to remember an event when engram cells respond naturally to a conditioned context, and should be unable to do so when the cells are silent. The team showed that this was true for the cortical engram cells, but only when tested more than a week after conditioning, when the hippocampal engram cells had already lost their memories. As Kitamura notes, “although the engram cells were formed on the first day, they could only be activated naturally much later. This means that it took time for them to mature and change from silent engrams to active ones.”

Further testing showed that this maturation process required input over several days from the hippocampal engram cells. Inhibiting output from these cells after conditioning made it impossible to activate the frontal engram cells at later times. The team has also shown that engram cells for positive and negative emotional events form in another part of the brain called the amygdala, which is connected to both the hippocampus and the frontal cortex.

“Since the prefrontal cortex is also known to be crucial for rule learning and semantic memory formation,” notes Kitamura, “these results will allow researchers to delve deeper into the neural circuit mechanisms and engrams needed for their formation in the neocortex.” Steven Cavellier shared this information with networking community.

Source: http://www.medicalnewstoday.com/releases/316835.php?nfid=116332