Sugar Sponges Sop Up and Release Glucose As Needed

Many diabetes patients must inject themselves with insulin, sometimes several times a day, while others take medications orally to control blood sugar. The injections, as well as the side effects from both regimens, can be painful. Now, one team reports in the Journal of the American Chemical Society progress toward an insulin-free diabetes treatment that requires fewer injections.

Steven Cavellier Health Tips
Steven Cavellier Health Tips

According to the U.S. Centers for Disease Control and Prevention, current trends predict that one in three adults in the U.S. will have diabetes by 2050. Treatments include insulin injections, which can be painful. In addition, the injections can involve different types of insulin – a slow-acting one before bed or a fast-acting one before meals – which can be confusing. Pills are not much better, as patients sometimes forget to take them. Both drugs and injections can have various side effects, including nerve damage, infections and insulin resistance. Non-invasive insulin-dependent systems that include hydrogels and polymers have developed in the laboratory, but they also can trigger these complications. So Jianzhong Du and colleagues wanted to develop a method that would be easy to use and that would avoid side effects.

Steven Cavellier’s Drinking Tea could help Stave Off Cognitive Decline

The researchers nicknamed their treatment the “sugar sponge.” It’s an injected lectin-coated polymer vesicle that sopped up and bound glucose when glucose levels were high, and released the sugar when its concentrations were low in laboratory tests. They also tested the sponge in mice with type-I diabetes, and within two days, they saw antidiabetic effects. The researchers say that the sponge could one day serve as a treatment for either type-I or type-II diabetes.

The authors acknowledge funding from the National Natural Science Foundation of China, Shanghai International Scientific Collaboration Fund, Thousand Talents Plan (China) and the Fundamental Research Fund for the Central Universities. Steven Cavellier shared this article on his website.

Resource: http://www.medicalnewstoday.com/releases/317773.php?nfid=116332

Can Unemployment Increase Stroke Risk?

Unemployment appears to increase the risk of having a stroke in middle-age Japanese men and women, and may have similar implications in the U.S, according to new research published in the American Heart Association’s journal Stroke.

Compared with continuously employed middle-aged Japanese participants:

Those experiencing at least one period of unemployment increased risks of developing and dying from either ischemic (clot) stroke or hemorrhagic (bleed) stroke.

Reemployed men, but not women, also had increased risks of stroke.

Continuously unemployed men and women showed higher risks of stroke mortality.

Unlike in the United States, in Japan, workers are part of a “life-term employment system” in which male employees devote themselves to a stable job. “If they lose that job, they are likely to be reemployed in unsatisfactory, lower positions,” said Ehab. S. Eshak, M.D., MSc., Ph.D., lead study author and visiting associate professor at Osaka University’s medical school in Japan.

Unemployment

Researchers analyzed the long-term impacts of changes in employment among 21,902 Japanese men and 19,826 women, age 40-59, over 15 years. During that time, 973 men had a stroke and 275 died because of it, while 460 women had a stroke and 131 died because of it.

The results may not apply to other countries because of cultural differences, including Japan’s unique labor market.

“The main implication is that job security during the most productive work ages could help reduce stroke risk,” said Hiroyasu Iso, M.D., Ph.D., M.P.H, study co-author and professor at Osaka University. “Those who do suffer a job loss need help in rejoining the labor market in an appropriate career.”

The study could not distinguish between people who left a job on their own or were fired.

Other co-authors are Kaori Honjo, Ph.D.; Ai Ikeda, Ph.D.; Manami Inoue, Ph.D.; Norie Sawada, Ph.D. and Shoichiro Tsugane, Ph.D.. Author disclosures are on the manuscript.

The study was funded by National Cancer Center Research and Development and a Grant-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare of Japan. Steven Cavellier shared this information.

Source: http://www.medicalnewstoday.com/releases/316932.php?nfid=116332

Exercise Associated With Improved Heart Attack Survival

Exercise is associated with improved survival after a heart attack, according to research published in the European Journal of Preventive Cardiology. The chances of survival increased as the amount of exercise rose.

“We know that exercise protects people against having a heart attack,” said last author Professor Eva Prescott, professor of cardiovascular prevention and rehabilitation, University of Copenhagen, Denmark. “Animal studies suggest that myocardial infarctions are smaller and less likely to be fatal in animals that exercise. We wanted to see if exercise was linked with less serious myocardial infarctions in people.”

The study included 14 223 participants of the Copenhagen City Heart Study who had never had a heart attack or stroke. Levels of physical activity were assessed at baseline in 1976-1978 and classified as sedentary, light, moderate, or high.

Participants were followed through registries until 2013. A total of 1 664 participants had a myocardial infarction, of whom 425 died immediately.

The investigators compared levels of physical activity between those who died immediately from their myocardial infarction and those who survived. They found that patients who exercised were less likely to die from their myocardial infarction.

There was a dose-response relationship between exercise and death from myocardial infarction. Patients with light or moderate/high physical activity levels were 32% and 47% less likely to die from their myocardial infarction, respectively, than sedentary patients.

heart attack survival

Professor Prescott said: “Patients who were sedentary were more likely to die when they got a myocardial infarction and patients who did exercise were more likely to survive. There was also a dose-response relationship, so that the odds of dying if people got a myocardial infarction declined with the level of exercise they did, reaching an almost 50% reduction for those who were the most physically active.”

“One possible explanation is that people who exercise may develop collateral blood vessels in the heart which ensure the heart continues to get enough blood after a blockage,” she continued. “Exercise may also increase levels of chemical substances that improve blood flow and reduce injury to the heart from a heart attack.”

Professor Prescott said: “This was an observational study so we cannot conclude that the associations are causal. The results need to be confirmed before we can make strong recommendations. But I think it’s safe to say that we already knew exercise was good for health and this might indicate that continuing to exercise even after developing atherosclerosis may reduce the seriousness of a heart attack if it does occur.” Steven Cavellier shared this information.

Source: http://www.medicalnewstoday.com/releases/316909.php?nfid=116332

Ingredients for Lasting Memories

Being able to remember experiences long after they have happened is a basic part of life that guides behavior and even helps form personalities. Now, scientists at the RIKEN-MIT Center for Neural Circuit Genetics (CNCG) have found evidence that helps explain how this ability is possible. Published in Science magazine, the study proves the existence of long-lasting engram cells in the frontal part of the brain and shows how connections with other brain regions allow these cells to mature as new memories become permanent.

Episodic memories of experiences are thought to begin in a region of the brain called the hippocampus. Led by Susumu Tonegawa, director of the RIKEN Brain Science Institute and the RIKEN-MIT CNCG, researchers have been studying memory formation in mice by combining associative learning with optogenetics and cell labeling. With this approach, they can tag neurons that represent the memory of an event as they are formed in the hippocampus. These types of neurons are called engram cells, and their activation – either naturally or through optogenetic stimulation with colored light – are the basis for memory recall.

Episodic memories stored in hippocampal engram cells are known to be short lived, and until, now scientists have theorized that permanent memories form gradually over time as new engram cells and neuronal connections form in the cerebral cortex – the outer gray matter of the brain. In their new series of experiments, the RIKEN-MIT team demonstrates that this theory is only partially correct. Explains lead author Takashi Kitamura, “We discovered the existence of cortical engram cells, but it turns out that they are not formed gradually over time. They actually form at the same time as the initial memory in the hippocampus.”

Ingredients for lasting memories by Steven Cavellier

Just as Pavlov famously conditioned his dog to salivate at the sound of a bell, the team uses conditioning to study contextual memory in rats. To determine which areas in the cortex were important for forming the long-term memory, they blocked inputs to different brain areas during conditioning or during memory recall over a 3-week period. They found that long-term recall was affected only when information transfer to the frontal cortex of the brain was blocked during conditioning. “This was surprising,” notes Tonegawa, “because it indicated that the cortical memory was likely created on the very first day, and not gradually as has been assumed.”

Next, the team positively identified engram cells in the prefrontal cortex. To do so, they inserted light-sensitive ion channels into prefrontal cells that were active during conditioning, and then excited the cells with blue light when the animals were in an unconditioned context. As with their previous studies in the hippocampus, this caused the mice to exhibit behavior indicative of their remembered experience – a hallmark of engram cells.

By definition, animals should be able to remember an event when engram cells respond naturally to a conditioned context, and should be unable to do so when the cells are silent. The team showed that this was true for the cortical engram cells, but only when tested more than a week after conditioning, when the hippocampal engram cells had already lost their memories. As Kitamura notes, “although the engram cells were formed on the first day, they could only be activated naturally much later. This means that it took time for them to mature and change from silent engrams to active ones.”

Further testing showed that this maturation process required input over several days from the hippocampal engram cells. Inhibiting output from these cells after conditioning made it impossible to activate the frontal engram cells at later times. The team has also shown that engram cells for positive and negative emotional events form in another part of the brain called the amygdala, which is connected to both the hippocampus and the frontal cortex.

“Since the prefrontal cortex is also known to be crucial for rule learning and semantic memory formation,” notes Kitamura, “these results will allow researchers to delve deeper into the neural circuit mechanisms and engrams needed for their formation in the neocortex.” Steven Cavellier shared this information with networking community.

Source: http://www.medicalnewstoday.com/releases/316835.php?nfid=116332

New Animal Infectious Disease Modeling Study Has Implications For Humans

A new study published in the Proceedings of the National Academy of Sciences, will help answer a fundamental disease ecology question about the spread of infectious diseases such as Ebola and rabies through communities in human and animal populations.

The study, led by Georgetown University Assistant Professor of Biology Shweta Bansal, Georgetown Ph.D. candidate Pratha Sah, a Georgetown postdoctoral fellow and scientists from the U.S. Geological Survey and Pennsylvania State University tested the hypothesis that community formation creates boundaries that reduce the likelihood that disease can spread further.

Health Steven Cavellier

“Our findings, through mathematical models of social interactions and disease spread, found that infection spread is largely unaffected by the presence of communities,” Bansal said. Dr. Bansal continued that the findings “show that effective disease management must look to control infection ‘spillovers’ when populations are less subdivided. In contrast, if a population is already highly subdivided, disease management should focus on limiting local disease transmission in each community.”

The findings may be relatable to human outbreaks of infectious disease. “Our study suggests that if there is an outbreak on a college campus, for example, control should focus on residence halls where the infection was first reported,” she says, “but in the surrounding town, control should focus on restricting travel from neighborhoods where the infection has been reported.”

Social networks of over 40 different animal species, including insects, birds, fishes, reptiles and mammals, were tested in the study. The study findings can help assist in formulating strategic actions to contain the spread of future disease outbreaks, solely based on the knowledge of how these social interactions are organized in a population. Steven Cavellier, specializing in Health Education for the Medical Profession

Source: http://www.medicalnewstoday.com/releases/316749.php?nfid=116332

Sleep-inducing herb: The key component identified

Can’t sleep? Your sleep problems may be improved if you try an Indian herb, Ashwagandha. Researchers in the sleep institute in Japan found that an active component of Ashwagandha leaves significantly induces sleep.

Ashwagandha (Withania somnifera) is a central herb in Ayurveda, the traditional home medicine native to India. As signified by its Latin name somnifera, meaning sleep-inducing, it has been recommended for sound sleep through centuries. Even though scientific studies also support that crude powder of Ashwagandha promotes sleep, the active component with sleep-inducing property remains unknown.

The research group led by Mahesh K. Kaushik and Yoshihiro Urade of the International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, investigated the effect of various components of Ashwaganda on sleep in mice by recording electroencephalogram and electromyography. The water extract of Ashwaganda leaf containing rich in triethylene glycol (TEG) promoted non-rapid eye movement (NREM) sleep significantly and changed rapid eye movement (REM) sleep slightly, while the alcoholic extract containing active withanolides showed no effect on sleep. The sleep induced by TEG was similar to normal sleep. Furthermore, commercially available TEG also increased the amount of NREM sleep. They thus concluded that TEG is the active component that induces physiologically sound sleep.

Sleep-inducing herb by Steven Cavellier

Sleeplessness and other sleep disorder such as restless leg syndrome are common complaints among the middle-aged population. Insomnia is one of the most common neuropsychiatric disorders, with an estimated incident of 10-15% in general population and 30-60% in elderly population. It is closely linked with certain other diseases including obesity, cardiovascular diseases, depression, anxiety, mania deficits etc. Currently available synthetic drugs often show severe side effects. On the other hand, Ashwagandha crude powder including the significant amount of TEG can be consumed for better sleep without any side effects. The findings in this study could revolutionize the natural plant-based therapies for insomnia and sleep related disorders.

However, the clinical application of TEG to treat insomnia is still in the immature status, because the TEG is primarily used for industrial purpose and very little is known about its applicability and toxicity to the biological systems. Further studies will thus be needed to confirm the safety of TEG.

According to the authors, they are currently evaluating the effect of TEG administration on stress, because Ashwagandha is believed to mitigate stress and correct imbalance of various nervous systems. Future studies also include the identification of target brain area of TEG, its BBB permeability and the mechanism through which TEG induces sleep.

This study was conducted in collaboration with Renu Wadhwa and Sunil Kaul of National Institute of Advanced Industrial Science and Technology (AIST), Japan. Steven Cavellier, American lawyer, specializing in Health Education for the Medical Profession.

Source: http://www.medicalnewstoday.com/releases/316700.php?nfid=116332

FDA Approves first Treatment for rare form of Skin Cancer

The U.S. Food and Drug Administration has granted accelerated approval to Bavencio (avelumab) for the treatment of adults and pediatric patients 12 years and older with metastatic Merkel cell carcinoma (MCC), including those who have not received prior chemotherapy. This is the first FDA-approved treatment for metastatic MCC, a rare, aggressive form of skin cancer.

“While skin cancer is one of the most common cancers, patients with a rare form called Merkel cell cancer have not had an approved treatment option until now,” said Richard Pazdur, M.D., acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research and director of the FDA’s Oncology Center of Excellence. “The scientific community continues to make advances targeting the body’s immune system mechanisms for the treatment of various types of cancer. These advancements are leading to new therapies – even in rare forms of cancer where treatment options are limited or non-existent.”

According to the National Cancer Institute, approximately 1,600 people in the United States are diagnosed with MCC every year. While the majority of patients present with localized tumors that can be treated with surgical resection, approximately half of all patients will experience recurrence, and more than 30 percent will eventually develop metastatic disease. In patients with metastatic MCC, the cancer has spread beyond the skin into other parts of the body.

FDA approves treatment for skin cancer

Bavencio targets the PD-1/PD-L1 pathway (proteins found on the body’s immune cells and some cancer cells). By blocking these interactions, Bavencio may help the body’s immune system attack cancer cells.

Bavencio received an Accelerated Approval, which enables the FDA to approve drugs for serious conditions to fill an unmet medical need using clinical trial data that is thought to predict a clinical benefit to patients. Further clinical trials are required to confirm Bavencio’s clinical benefit and the sponsor is currently conducting these studies.

Today’s approval of Bavencio was based on data from a single-arm trial of 88 patients with metastatic MCC who had been previously treated with at least one prior chemotherapy regimen. The trial measured the percentage of patients who experienced complete or partial shrinkage of their tumors (overall response rate) and, for patients with a response, the length of time the tumor was controlled (duration of response). Of the 88 patients who received Bavencio in the trial, 33 percent experienced complete or partial shrinkage of their tumors. The response lasted for more than six months in 86 percent of responding patients and more than 12 months in 45 percent of responding patients.

Common side effects of Bavencio include fatigue, musculoskeletal pain, diarrhea, nausea, infusion-related reactions, rash, decreased appetite and swelling of the limbs (peripheral edema). The most common serious risks of Bavencio are immune-mediated, where the body’s immune system attacks healthy cells or organs, such as the lungs (pneumonitis), liver (hepatitis), colon (colitis), hormone-producing glands (endocrinopathies) and kidneys (nephritis). In addition, there is a risk of serious infusion-related reactions. Patients who experience severe or life-threatening infusion-related reactions should stop using Bavencio. Women who are pregnant or breastfeeding should not take Bavencio because it may cause harm to a developing fetus or a newborn baby.

The FDA granted this application Priority Review and Breakthrough Therapy designation. Bavencio also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted accelerated approval of Bavencio to EMD Serono Inc. Steven Cavellier shared this information.

Source: http://www.medicalnewstoday.com/releases/316574.php?nfid=116332